
Description
Microservices Design Pattern

Microservices represent an architectural and development
approach that is much different from the practice used to build
large, monolithic applications. The more functionality
encompassed by these large codesets the more complex the
design, development and testing. Although monolithic
architectures involving narrowly scoped applications can often be
deployed much faster than microservices architectures, at least
initially, changes to monolithic systems become increasingly more
difficult and time consuming as each change requires extensive
regression testing.

On the other hand, the microservices approach consists of a set of
loosely coupled, collaborating set of services supporting a
narrowly defined scope of business functionality. They are
characterized by their independence, where each of the services is
developed, tested and deployed separately from each other and
run as separate processes. Given their independence,
microservices can be developed using different development
languages (i.e., polyglot) and persistence components. They
interact with other services through well-defined interfaces. Being
simpler, and more modular microservices become a catalyst for
enhanced productivity, innovation, polyglot coding and data
persistence. Microservices typically execute within a container.

Major Vendors:
This is an open source
design pattern, not a
product. However, Amazon
Web Services, Microsoft
Azure, Google Cloud
Platform, Dockers and
other vendors provide
enabling platforms and
technology that can be
used to support a
microservices/container
architecture.

Case Study:
Migrating E-commerce
Architecture from
Monolithic COTS to
Microservices Platform

Developing a Continuous
Integration and
Deployment Pipeline

Containerization

Containers are self-sufficient bundles that comprise all the software needed (with the excep-
tion of the operating system kernel) to run services in an isolated process and are immutable
(unchanging over time). Being self-sufficient means that a container commonly has the core
application components along with its dependencies, such as libraries, configuration variables,
persistence and release artifacts. Containers came as a solution to the challenge of running
applications and system reliably when moved across different computing environments, hence
becoming a key tool to enable a DevOps pipeline approach in a sustainable manner.

KEY ENABLING TECHNOLOGY OVERVIEW

Microservices & Containerization

 https://cimphoni.com/?casestudies=migrating-e-commerce-architecture-from-monolithic-cots-to-microservices-platform
 https://cimphoni.com/?casestudies=migrating-e-commerce-architecture-from-monolithic-cots-to-microservices-platform
 https://cimphoni.com/?casestudies=migrating-e-commerce-architecture-from-monolithic-cots-to-microservices-platform
 https://cimphoni.com/?casestudies=migrating-e-commerce-architecture-from-monolithic-cots-to-microservices-platform
https://cimphoni.com/?casestudies=developing-a-continuous-integration-and-deployment-pipeline
https://cimphoni.com/?casestudies=developing-a-continuous-integration-and-deployment-pipeline
https://cimphoni.com/?casestudies=developing-a-continuous-integration-and-deployment-pipeline

KEY ENABLING TECHNOLOGY OVERVIEW MICROSERVICES & CONTAINERIZATION

How to Get Started
A microservices/containers approach is best suited where the business environment is rapidly
changing and developing large, complex, monolithic solutions over months and even years is not
an option. With that said, it is quite normal to utilize both approaches, monolithic and
microservices, within the same company based on the degree of business change over time, the
distributed nature of the software development teams (e.g., on-premise, remote, offshore), the
maturity/fit of legacy systems and several other factors.

Without sounding self-serving, the best way to get started is to utilize an outside firm to “kick start”
your microservices initiative. Cimphoni’s consultants have extensive experience in the design and
implementation of distributed platforms along with progressive migrations of monolithic legacy
software solutions towards modern, agile architectures (i.e., wholesale system replacement).
Cimphoni’s consultants have also used microservices to improve the capabilities of legacy
systems (i.e., “bolt on” solutions). Developing a small, narrowly scoped system to serve as a
proof-of-concept also works to demonstrate the value of microservices as well as educate the
development team on the tools, methodologies, design patterns, best practices, etc.

About Cimphoni
Cimphoni is built on the premise that technology, when properly applied and led, can deliver
innovative solutions that transform businesses. The Cimphoni team is comprised of technology,
operations and business consultants with a thirst for innovation and a passion for leveraging
emerging technologies to deliver exceptional, measurable results for our clients. Founded in 2012,
Cimphoni serves customers throughout the United States from its headquarters in suburban
Milwaukee. More information can be found at cimphoni.com

Page 2

Application
As the microservices design pattern leverages the philosophy of business domain-driven
design (where the granularity of the service itself focuses on a specific business function),
the idea of matching software components with business processes and related functions
gets closer to realization. “Microservices allow for building software solutions incrementally
instead of deploying large, complex projects”. Development can be done in small teams,
more or less independent of each other. This results in software development teams that are
more easily organized around business capabilities and not technologies. Services grow as
adaptable components to be used in multiple business contexts and leveraged by more than
one business process or function across the enterprise.

As such microservices become an excellent tool to complement or extend the capabilities of
existing enterprise software platforms or even support the wholesale replacement of systems
within and across business domains. Their fine granularity and inherently bounded context
allow for surgical, progressive, rapid, low risk implementation of change (new computing,
data augmentation, integration capabilities, etc.) with fast return on investment. They also
enable a degree of experimentation by supporting the rapid deployment and redesign of
solutions based on responses from employees and/or customers.

https://cimphoni.com

